
Journal of Technology Research Volume 7

Programmatic web data extraction, Page 1

Programming case: A methodology for programmatic web data
extraction

John N. Dyer

Georgia Southern University

ABSTRACT

Web scraping is a programmatic technique for extracting data from websites using

software to simulate human navigation of webpages, with the purpose of automatically

extracting data from the web. While many websites provide web services allowing users to

consume their services for data transfer, other websites provide no such service(s) and it is

incumbent on the user to write or use existing software to acquire the data. The purpose of this

paper is to provide a methodology for development of a relatively simple program using the

Microsoft Excel Web Query tool and Visual Basic for Applications that will programmatically

extract webpage data that are not readily transferable or available in other electronic forms. The

case presents an overview of web scraping with an application to extracting historical stock price

data from Yahoo’s Finance® website. The case is suitable for students that have experience in an

object-oriented a programming course, and further exposes students to using Excel and VBA,

along with knowledge of basic webpage structure, to harvest data from the web. It is hoped that

this paper can be used as a teaching and learning tool, as well as a basic template for

academicians, students and practitioners that need to consume website data when data extraction

web services are not readily available. The paper can also add value to student’s programming

experience in the context of programming for a purpose.

Keywords: Data Extraction, Web Scraping, Web Query, Web Services

Copyright statement: Authors retain the copyright to the manuscripts published in AABRI

journals. Please see the AABRI Copyright Policy at http://www.aabri.com/copyright.html

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 2

INTRODUCTION

Increasingly, many individuals and organizations have the need to extract massive

amounts of data from the web. The basic technique for extracting the data is web scraping, which

can be loosely defined as a computer program to extract data from a website. Wed scraping is

commonly used to facilitate online price comparisons, contact scraping, online product catalog

scraping, weather data monitoring, economic/demographic/statistical data extraction, and web

mashups, among other uses. Web scraping is also a subset of People-Oriented programming,

which empowers individuals to program web-based self-fashioned tools that ultimately suit the

user’s own needs (International Journal of People-Oriented Programming (IJPOP), n.d.).

Often times a company releases its application program interface (API) to the public so

that software developers can design products that are powered by its service for extracting data

(Roos, 2007). In many cases an API doesn’t exist and the developers must write their own. Web

scraping is commonly used to either extract data from a legacy system (which has no other

mechanism to transfer data), or to extract data from a website which does not provide a more

convenient API (Data scraping, 2015).

Since most webpages are designed for human end-users, navigation and data extraction

are not necessarily easily automated. As such, web scraping is typically considered a “last resort”

tool, with high programming and processing overhead. It focuses on acquiring HTML formatted

data from a webpage and storing the data in a variety of formats, including a text file, a

worksheet, or a database. Since websites are built using HTML or XHTML, web scraping

utilizes software to simulate human exploration and extraction of data from the web, pulling the

data directly out of the HTML. The program then goes through all available pages and collects

data and images as a human would do manually using mouse clicks and copy-and-paste. As

such, any content that can be viewed on a webpage or is contained in the source code can be

scraped. It is for this reason that web scraping tools programmatically automate data

extraction/acquisition from a website.

The focus on this case study is on developing a methodology for programmatic web data

extraction when an API or other web service is not available. Note that although there are

software programs and web-browser add-ins that facilitate web scraping (paid subscription and

free-ware), this paper illustrates writing one’s own program. A quick Internet search will reveal

many of the available web scraping programs, as well as a highly-rated Google Chrome browser

extension named Web Scraper® (Web Scraper, n.d.) and a program named Data Toolbar® (Web

Data Extraction Software Made Simple, n.d.). A good overview of web scraping can be found at

Brody, H. (2012), while a good instructional resource can be found from Brody, H. (2013).

 To visualize web scraping, consider an online product catalog wherein a certain

category of products will result in many items displayed on a webpage, but the catalog will

display only a subset of all the items per webpage (usually displayed in an HTML table element).

That is, a single web page may display 20, 50 or 100 items per page, with paging links allowing

navigation across all subsequent webpages. Such is the case with auction sites such as eBay®,

wherein a search may result in 50 items per page across multiple webpages. Although many

websites allow the user to choose a fixed number of items per page, few websites offer a single

page view of unlimited size.

Now consider the task of downloading the data for each item across each webpage. If a

single page view of all the items were available the task would simply be that of a few

keystrokes allowing one to select the desired data, copy the data, and then paste the data into

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 3

document file or worksheet. But, it is easy to imagine a website wherein thousands of items are

displayed across many webpages, hence one is limited to a small subset in each webpage view.

Without some type of automation, it would require one to navigate through each webpage and

linked page, selecting the desired data, copying, and then pasting each of the webpage’s contents.

This is obviously not a practical approach, especially if one wanted to acquire the complete

contents of a large website on a frequent basis.

Fortunately, if a website is structured appropriately, Excel contains all the tools necessary

to automate the process of paging through and acquiring all the desired data; relatively quickly

and efficiently. An advantage of using Excel is its relative ease of use and a high degree of

familiarity among many business professionals and programmers, and relative familiarity among

students. Excel is an excellent tool for analyzing data, including charts, sorting, filtering, and

data modeling, among many used. Additionally, Excel has VBA programming capabilities that

allow one to use a subset of Visual Basic to automate and manipulate Excel and other Microsoft

applications, including access to the COM and ActiveX Objects, as well as a multitude of built-

in functions.

This case describes the methodology for programmatically extracting hundreds and

thousands of historical stock price data over hundreds of webpages from Yahoo’s Finance

website using the Excel Web Query tool. The stock price data example is being used since the

website structure accommodates use of Excel in the manner described, and the task is very

similar to how one would go about extracting data from numerous other structurally similar

websites. Additionally, Yahoo has no express policies preventing programmatic data extraction.

As such, Section 2 describes the manual technique for extracting a single page of records, while

Section 6 describes the fully automated programmatic approach returning thousands of records

across hundreds of webpages. Section 3 discusses webpage structure which is essential in the

automation process, and Section 4 discusses discovery in the context of Yahoo’s Finance

webpage structure. Section 5 provides the necessary overview of Excel and VBA required to

automate the data extraction. One should note that the Yahoo Finance historical prices webpage

has a downloadable csv file containing all the data over the specified period of data.

Nevertheless, this case is to illustrate a program when no such file or other data extraction

technology is readily available.

EXTRACTING DATA USING THE EXCEL WEB QUERY TOOL

The Excel Web Query (WQ) tool facilitates bringing data from a website into an Excel

worksheet. Web queries are an easy, built-in way to bring data into Excel from the Web. The

WQ tool allows the user to point a web query at an HTML document that resides on a Web

server and pull part or all of the contents into your spreadsheet. The WQ tools can also retrieve

refreshable data that is stored on the Internet, such as a single table, multiple tables, or all of the

text on a webpage (Import external data from a complex web site into Excel, n.d.). The tool is

based on discovering HTML tables on the webpage and allowing the user to select the table(s)

containing the data that is desired to download. In its simplest deployment, one initiates a new

web query in Excel and enters a uniform resource locator (url) into the WQ address field. The

WQ navigates to the webpage and displays an icon image beside all HTML tables in the

webpage. The user can select one or more tables by clicking the icon images. The text from all

selected tables is downloaded and displayed in the Excel worksheet. A more extensive

description of the WQ tool is available by Rice, F. (2004). As a quick example we will use a web

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 4

query to download one page of historical stock price data for Wal-Mart® from Yahoo Finance.

The Wal-Mart historical prices url is http://finance.yahoo.com/q/hp?s=WMT+Historical+Prices.

The reader is encouraged to engage the steps below. Perform the following steps.

Step 1. Open a new Microsoft Excel blank workbook and position the curser in cell A1.

Step 2. Follow the Excel menu path given as Data > Get External Data > From Web. The web

query tool will open.

Step 3. When the WQ tool opens type the url given above into the “Address” field and click the

“Go” button. It is common that a Script Error dialogue box will open, but the user can

continue to click the “Yes” button until it disappears. Note the screen as shown in Figure

1 (Appendix A). Pay particular attention to the yellow boxes with red arrows beside the

tables that have been detected.

Step 4. Click the yellow box beside the column labeled “Date” as shown with the arrow in Figure

1 (Appendix A).

Step 5. Click the “Import” button at the bottom of the WQ tool.

Step 6. When prompted by the dialog box named “Import Data,” keep the default

selections (Figure 2, (Appendix A)) and click “OK.” The data from the tables is imported

into the worksheet as shown in Figure 3 (Appendix A).

The result is 66 rows of historical stock prices, one for each of the latest 66 trading days. If one

observes the actual webpage there are navigation buttons (First, Previous, Next and Last) to

allow displaying prices over additional periods.

Unfortunately, the WQ tool used in this manner requires manual user intervention to

enter the url, set the options and properties, and execute the data import. This paper illustrates the

programmatic automation of this process for multiple urls obtained via sequential paging

(pagination). In this case it will automate the above steps for every webpage of price data; not

just the latest 66 days of trading. Although the Internet is full of tutorials on using the WQ tool

for simple webpage retrieval (as described above), extensive searches have found no literature or

tutorials for fully automating the WQ tool, including sequential pagination required for web

scraping. For more discussion and example of simple web queries, the interested reader is

encouraged to see the following; Get external data from a Web page (n.d.); Pieterse, J. (2006);

Pull data into Microsoft Excel with Web queries – TechRepublic (2006); Wittwer, J. (n.d.).

WEBPAGE STRUCTURE

Determining the structure of the webpage, the HTML tables, and the actual data is often

the first step in the programmatic approach. This step is called discovery and it may include

several different phases. Some discovery is manual in nature, like clicking through a website,

observing url patterns and paging parameters, noting table names and structures, viewing the

category and paging link urls, viewing the page’s source code, etc. Other discovery can be

accomplished with a few button clicks in Excel. Some discovery might use a combination of

both.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 5

The specific software being used to display webpages on a particular website often

determines the approach one will use to programmatically page through the website and extract

the data. Since urls are an important component of the program, it is important to determine if

server-side programming or client-side scripts are making the calls to the actual database server.

One might observe that on some websites each subsequent webpage has a unique url in the

browser address bar, while others show no change in the url, regardless of the webpage. In the

former case, it is most likely that client-side scripts are calling the database and displaying the

results in a webpage’s tables using the GET method of an HTML form element. In the latter

case, one has likely encountered server-side processing common in ASP and ASP.Net

applications, wherein the script on the page executes a server-side program that makes a call to

the database and then binds the data to the same webpage, hence no change in url. In this case

the HTML form element uses the POST method. A quick overview of the GET and POST

method is available through a standard Internet search, including HTTP methods: GET vs. POST

(n.d.), while a more descriptive overview is available by Korpela, J. (2003).

A good way to determine if the GET method is being used is to observe the url over

several sequential catalog pages. If the url contains “?”, “&” and/or “=” symbols, and sequential

paging results in subtle changes in some of the url’s string, then the GET method is being used.

The “?” indicates a query, the “&” indicates concatenation of a query string, while “=” sets

parameters in the query string to query values. Another common design may use either method,

but then nests the webpages within frames, so that the visible url remains the same, and only the

main frame contents seem to change.

Typically, the method used (GET versus POST) determines how the tables are fetched

into Excel, what the data structure and format will be, and the required parameter settings for the

WQ url. For example, if each webpage’s url structure and parameters are known, one can simply

code a For-Next loop in a VBA subroutine to use WQ to fetch each page’s desired data

according to the url’s changing parameters. In any case, it is important to have some knowledge

of data retrieval using the HTML DOM since HTML formatted data is being extracted. A

comprehensive overview of the HTML DOM can be located at Document Object Model (2015)

and The HTML DOM Document Object (n.d.).

Regardless of the webpage structure, the main objective of the program is to acquire the

desired data from the tables in each of multiple webpages. The program may also facilitate

automated cleaning of dirty data, editing the data, and structuring the data for upload to a

database or distribution. The following section demonstrates the required discovery of the

structure of the Yahoo Finance website from which we wish to extract the historical stock price

data across many pages of data. Again, this website is chosen because it closely resembles the

structure of many other websites that might be of interest, and it is also among the least

complicated of websites from which to extract data. The reader is encouraged to engage with the

discussion provided below to more clearly comprehend the environment and processes.

THE DISCOVERY PROCESS FOR THE YAHOO FINANCE WEBSITE

The Yahoo Finance page located at http://finance.yahoo.com allows a user to manually

input a stock symbol to return summaries, charts, and historical price data (among other data) for

the selected stock. The historical prices are of interest in this discussion. To obtain the historical

prices for Wal-Mart, one would navigate to the above url and then enter the Wal-Mart stock

symbol for a quote; WMT. When the subsequent webpage for Wal-Mart stock data opens, one

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 6

clicks the hyperlink titled “Historical Prices” in the left pane of the webpage, as shown in Figure

4 (Appendix A). The result is a webpage with a form that allows the user to select the date range

as well as an option for daily, weekly, or monthly stock data (prices and volume). The webpage

is initially loaded with the historical prices of the last 66 trading days. Figure 5 (Appendix A) is a

partial screen-shot of the date range and options fields, as well as stock price data displayed in a

table. Note the dates shown in Figure 5 (Appendix A), as this is the time period over which the

data will be returned.

As an example of discovery via webpage navigation, if one observes the initial url in the

web browser address field and the urls of subsequent pages (using the “Next” navigation

hyperlink) it is obvious the url structure that will be required to programmatically access each

subsequent webpage of data. The “Last” navigation hyperlink is also important, as it displays the

total number of records of historical price data over the selected date range. Using the default

dates in the “Set Date Range” fields of the webpage and clicking the “Get Prices” button, one

can view the initial url in the browser’s address field. Note the initial url below, and that the

default “End Date” is Oct 23, 2015, the date on which this example was written.

http://finance.yahoo.com/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d

The initial url path is also part of the url for all subsequent pages, reflecting the selected

stock symbol query parameter (s=WMT), concatenations (&), date query parameters and values

reflecting the dates shown in Figure 6 (Appendix A), (a=7, b=25, c=1972, d=10, e=15, f=2015),

and the optional parameter for daily prices (g=d). The parameters a, b, and c are the starting

month, day and year parameters, while the parameters d, e, and f are the ending month, day, and

year values. Note that due to indexing set by Yahoo that each month value is one month behind.

For example, “a=07” in the above url is August, and “d=09” is October. When one clicks on the

“Next” navigation button three times, the subtle change in the subsequent urls include the

following paths appended with the initial url as shown below. The last url shown below results

from clicking the “Last” navigation button.

Page 2 url: &z=66&y=66, Page 3 url: &z=66&y=132, Page 4 url: &z=66&y=198, Last Page url:

&z=66&y=10824

The obvious structure is that each webpage displays 66 historical stock price records in

the price table. The parameter z indicates the number of records per table, and y indicates the

ending value of the next set of 66 records. If one divides the last page url value of y=10824 by

z=66, the resulting value is 164, indicating 164 additional pages beyond the initial page; 165

pages total. Additionally, the initial url can have the following appended without affecting the

url; &z=66&y=0.

The key here is to first determine the number of pages of historical price data for any

specified stock symbol, hence enabling the programmatic looping required for the WQ tool to

acquire the table on each webpage. For example, in this case we need a loop to iterate from i = 0

to 164 in increments of i*66, emulating urls ending in y=0, y=66, y=132, y=198, … y=10824.

The static url is as follows.

http://finance.yahoo.com/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d&z=

66&y=

So, the url for input into the WQ tool is the static URL, while the dynamic path component is

simply an appended value of y, like &y=0, &y =66, … &y=10824. Obviously, a different quote

symbol and different dates will have different parameter values.

Another method of discovery involves viewing the page source for the webpage, which

provides a view of the webpage’s source code. Although the initial results appear as an

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 7

entanglement of undecipherable source code, there is valuable information in the code. For

example, after displaying the historical prices webpage for WMT, one can right-click anywhere

on the page and select “View page source.” Navigating down to around line number 230 one can

observe the urls for the “Next” and “Last” pages of historical data, as shown below.

href="/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d&z=66&y=66

href="/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d&z=66&y=10824"

Note that although not shown in the code, the url of the first page ends in “&y=0”. Again,

dividing 10824 records by 66 records per page results in 164 pages, plus the additional first page;

a total of 165 pages of records. This information will later be programmatically extracted for

automation of the WQ tool. Additionally, one can use the browser’s “Inspect element” tool to

determine the next and last webpage urls. For example, while in webpage view, one may right-

click on the “Next” navigation button, select “Inspect element,” and notice the same url as shown

above; likewise, for inspecting the “Last” navigation button. The following section provides an

overview of Excel macros and the VBA programming language in regards to automating the WQ

tool for data extraction from the Yahoo finance website.

UNDERSTANDING EXCEL MACROS AND VBA

The ultimate goal of the automation is to, for a given stock symbol, programmatically

extract every historical price summary across every webpage and store them in an Excel

worksheet. This involves several programmatic steps, including, extracting, and recording the

necessary parameters and values from the source code urls, calculating the number records,

records per page, and of pages of data, automating the WQ tool to use the parameters to

download the desired data, and then clean the data of unwanted data (dirty data).

This paper illustrates the implementation of the WQ tool using Microsoft Excel 2016, but

there are no notable differences that would affect the implementation using previous versions of

Excel, as far back as 2007. High-end users of Excel may be more familiar with recording macros

and programming VBA in the Visual Basic Editor (VBE), but basic knowledge in each of these

is required to automate Excel in the fashion described in this paper. A more extensive treatment

of using VBA in Excel can be found at Korol, J. (2014) and Walkenbach, J. (2013). At a

minimum, the reader must be familiar with Excel macros and VBA, so we define the following

in laymen’s terms.

• Macro - A macro is a program that store a series of commands that one might execute in

Excel. It is the simplest form of automation, showing Excel the steps to follow to accomplish

various tasks. A macro runs within Excel and automates repetitive tasks within the

spreadsheet environment. Macros can be created by using Excel’s built-in recording tool

(Macro Recorder) or written using the VBE in Excel. Macros are created with the

programming language VBA.

• VBA – VBA is an implementation of Microsoft's event-driven programming language,

Visual Basic 6, enabling building functions and subroutines to automate processes in Excel

(and other Microsoft applications). It can be used to control many aspects of the host

application (Excel in this case), including manipulating worksheets, ranges, cells, and user

interface features such as menus and toolbars, working with custom user forms or dialog

boxes, interacting with other Microsoft and Windows applications, and interacting with the

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 8

web (among other aspects). VBA runs within Excel rather than as a stand-alone program

(Visual Basic for Applications, n.d.).

In general, macros are recorded by the user, while subroutines are written using VBA.

When a macro is recorded, the instructions are automatically created inside of a module using a

VBA subroutine. In either event, the VBE allows one to edit existing macros or to create

subroutines within the module. The only real difference between a macro and a subroutine is

how they are created; either recorded in Excel or written by the user. Following the creation of a

macro and/or subroutine, it can be run (executed) using a variety of methods, including key-

board commands, button clicks, dialogue boxes, user forms, etc. They can also be run directly

from the VBE using the run icon or the F5 key.

The Excel 2016 menu contains main menu tabs that house groups of related tools in a

ribbon. In the case of macros and the VBE, the menu tab named “Developer” houses the required

ribbons and tools. Since it is a less common tab option it is not typically included in the default

tab list when Excel is installed. In this case, the user must customize the main menu to include

the Developer tab. Appendix B describes the steps to include the Developer tab and provide

access to macros and the VBE. As previously stated, all VBA code is written within a module in

the VBE. Appendix C describes using the VBE to create a module and start programming a

subroutine. The following section discusses programmatic automation of the WQ tool to enable

data extraction.

AUTOMATING THE WEB QUERY FOR DATA EXTRACTION

To prepare any web data extraction program, a user specifies a starting URL, a crawling

rule (pagination) and content or page HTML elements to collect. The program then goes through

all available pages and collects data as a human would do manually using mouse clicks and

copy-and-paste. This paper describes the programmatic web query to return all historical stock

price summaries across all webpages of data. As such, the program includes five tasks as shown

below, with each task consisting of a VBA subroutine. Note that the dates in the urls and figures

are those when the paper was written and will change daily.

Task 1: Extract Webpage URLs

Task 2: Extract Page Navigation URLs

Task 3: Extract URL Parameters and Values

Task 4: Run the Web Query and Download Stock Price Data

Task 5: Clean the Data

Following completion of all five programming tasks, the subroutines are combined into

one subroutine that calls the five subroutines and runs them in sequence by clicking a button on

an Excel worksheet. Although all five subroutines could easily be combined and written into

only one, they remain separate in this paper for the sake of clarity of each task. A discussion of

all five tasks follows. Note that for the sake of brevity the VBA code does not follow best

practices of input data validation, the explicate declaration of variables, code for exception and

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 9

error handling, or code commenting. Instead, each subroutine is shown in a table with a

description of the subroutine discussed in context of the task, while a subsequent table contains

code descriptions. Furthermore, in many cases, what would normally be separate lines of code

are combined into one line using the colon symbol “:” to break the code execution apart but

consolidate it on one line.

Before writing the subroutines one must first setup the Excel workbook. To do so

complete the following steps. Note that in step 1 the worksheet must be saved as shown else the

VBA code will not run.

Step 1. Open a new Excel workbook, save with the name “StockDataWebQuery,” and save as an

“Excel Macro-Enabled Workbook.”

Step 2. Create and name three worksheets using the names “IO,” “URLs” and “Prices.”

Worksheet names can be changed by right-clicking the worksheet tab and selecting

“Rename.”

Step 3. Format the first worksheet named “IO” exactly as shown in Figure 6 (Appendix A), and

save the workbook.

Note that the worksheet named “IO” is for initial input/output associated with first four

subroutines, “URLs” is used to store and manipulate the required urls used in the first three

subroutines, and the “Prices” worksheet will store the final historical stock price data records

generated by the forth subroutine (which is the actual automated WQ). The only user input

required in the worksheet is typing a stock symbol into Cell “B1” on the “IO” worksheet. The

other cells are set programmatically and will provide required inputs to various subroutines. The

cell data will be described in the context of the discussion of each task and related subroutine.

Task 1: Extract Webpage URLs

Recall from the section on the discovery process that one can determine the url that

contains the parameters and values needed to run the web query by either of visually inspecting

the address bar url or using the “Inspect Element” tool for the Last navigation button, or by

viewing the webpage source code. The url provides the query parameters (a, b, c, …y) and well

as the values (07, 25, 1972, …10824). Note that these parameter values will change daily. The

required url follows.

http://finance.yahoo.com/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d&z=

66&y=10824

The first task then is to programmatically extract the url containing the parameters and

values from the Yahoo Finance webpage for the selected stock. By viewing the source code for

the webpage one would notice many urls in the code (over 100). The required url above is just

one of these. Furthermore, one would notice that each url in enclosed in a tag, given by <a>.

Fortunately, the HTML DOM “getElementsByTagName” method is available to

programmatically extract all urls into a worksheet. The method will extract all tags named “a”

which is an anchor object in the HTML DOM (HTML DOM getElementsByTagName() Method,

n.d.). Again, discovery of the tag name was required by viewing the source code of all urls on the

initial webpage; for example <a href="http:\\ ….

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 10

So, the program must first determine the initial url of the desired webpage, open an Internet

Explorer browser session, navigate to the webpage, and then extract all the urls into the

worksheet named “URLs.” Note that before running the subroutine the user must first enter a

stock symbol in the “IO” worksheet in cell “B1.” In this example the code is extracting price data

for Wal-Mart, whose stock symbol is WMT. After writing the code, entering the stock symbol

and running the code, the user can observe the initial url in the “IO” worksheet (among the other

extracted urls in the “URLs” worksheet). The subroutine can be run in VBE by pressing the F5

key or by clicking the run icon on the VBE toolbar. Figures 7 shows the “IO” worksheet with the

initial url programmatically generated and stored “B2.” Figure 8 (Appendix A) shows rows 109

through 114 of the “URLs” worksheet, wherein the shaded region contains the actual urls that

will later be extracted. Note that the month/day/year parameter/values are reversed, but this is

immaterial. The code for the first task is shown in Table 1 (Appendix A), while the description

of the code is shown in Table 2 (Appendix A).

Task 2: Extract Page Navigation URLs

The urls resulting from Task 1 (Figure 8 (Appendix A)) will later be used to allow

extraction of the required parameters and values in Task 3. Instead of directly pulling out the urls

though, it is easier to delete the unwanted urls. Again, it is important to note by inspection that

all four of the urls in Figure 8 (Appendix A) have the common url component

“http://finance.yahoo.com/q/hp?s=”. Hence, the subroutine in Task 2 will simply delete every

row on the worksheet where the url doesn’t have the same first 30 characters from the left shown

in the url above. Again, the code is shown in Table 3 (Appendix A) and described in Table 4

(Appendix A). The result is the four shaded urls shown in Figure 8 (Appendix A).

Task 3: Extract URL Parameters and Values

The primary objective of Task 3 is to create the static url component required in the

automated web query in Task 4. The url below is the required static url component.

http://finance.yahoo.com/q/hp?s=WMT&a=07&b=25&c=1972&d=09&e=23&f=2015&g=d&z=

66&y=

The result is the static url component using the extracted parameters and values, as well

calculations for the total number of records, the number of records per page, and the total number

of pages of records to be downloaded. These calculated values are also used in Task 4.

Notice that the parameter y in the static url above has no assigned value (as shown in

Task 1), as it will be dynamically appended to the web query in the code. Also, note that of the

four urls remaining after Task 2, the first and third urls are the only ones that are actually needed

to extract the required parameters and values. The first and second are identical while the third

and fourth are identical. The first url will be retained to extract the parameters (a, b, c, …y),

while the third url will be retained to extract the parameter values. As such, the code first uses

the VBA “RemoveDuplicates” method to remove the unwanted duplicate urls, and then uses the

VBA “TextToColumns” method to isolate both the parameter/value combinations After isolating

the combinations, a VBA “Replace” method is used to replace unwanted characters with an

empty string, leaving only the desired parameters and values. These parameters and values are

copied from the “URLs” worksheet and pasted into the appropriate cells in the “O” worksheet.

They are then used to create the static url. The code is shown in Table 5 (Appendix A) and

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 11

described in Table 6 (Appendix A). Figure 9 (Appendix A) reflects the” URLs” worksheet after

the code in line 2 executes, while Figure 10 (Appendix A) reflects the worksheet following

execution of lines 3-7. Finally, Figure 11 (Appendix A) reflects the “IO” worksheet after the

remaining code has been executed.

Task 4: Run the Web Query and Download Stock Price Data

Task 4 will use the static component of the url in Figure 11 (Appendix A) with the

dynamically changing value of y and the total number of pages to programmatically iterate

through the webpages and download the data from each webpage. Recall from discussion in the

discovery process how the WQ tool was used to download the first set of records. If a macro is

recorded using the WQ tool, the VBA WQ output will appear as shown in Appendix D, Table 12

(Appendix A). Note that the actual WQ is executed in lines 1 and 2, while the only other required

VBA code is in lines 18, 24 and 25. The other lines of code are option, are outside of the purview

of this paper, and are omitted from the code. It should be noted that including line 3 will create a

run-time-error and prevent the code from running. Hence, the code for Task 4 uses only the

required lines of the WQ code. Note also that line 18 reflects that the selected HTML table is

“15.” If one were to view the source code of the webpage and count the tables, the desired data is

indeed in table 15. The code is shown in Table 7 (Appendix A) and described in Table 8

(Appendix A).

The VBA for the WQ requires both a url and the destination cell for the output, as shown

in line 9 of Table 7 (Appendix A). Both the url and destination will change for each iteration (i)

of the For-Next loop. The variable “WqURL” in line 5 is simply a static string that is set

programmatically, while the variable “DynamicWqURL” is the programmatically set connection

string url required in the WQ, which is a dynamic string resulting from concatenating the static

string with the dynamically changing value of y. Recall that y is the next set of 66 records. For

example, when i=0, the WQ navigates to the url ending in y=0*66=0 (the first page). When i=1,

the url ends in y=1*66=66 (the second page), and so on, until i reaches its upper bound (total

number of pages -1). Recall, the total number of pages is stored in the “IO” worksheet, cell “J7.”

For subroutine testing purposes the upper bound variable can be replaced with a static value (like

2) to extract only a few pages of data. For example, line 7 can be changed to “For i = 0 To 2

‘TotalPages – 1” where the apostrophe following the value 2 is simply commenting out the upper

bound.

Regarding the destination, this is the cell in the worksheet where the stock price output is

to be stored. A variable named “LastRow” is used to determine the last used row in the

worksheet to know where to store the next set of records. For example, for iteration i=0, the

LastRow value is 1, and the code in line 12 tells the WQ to store the records starting in cell

“A2,” which in the code is the row and column given by “row=LastRow+1”, “column=1.”

Figure 12 (Appendix A) reflects the truncated output after only 2 iterations; i=0 and i=1. Note

that the row 1 is empty, row 2 contains the output headers, row 60 is non-trading data regarding a

dividend distribution (dirty data), row 70 is the footnote for the asterisk in the last column (dirty

data), and row 71 is header for the second set of records (dirty data). After a set of records is

downloaded, the “LastRow” value is recalculated returning the row number containing the

footnote, and the row is deleted (the footnote row). For the next iteration, “LastRow” is

calculated again and the next set of records is stored in the first available row with no data

(LastRow +1). Note that the other dirty data issues will be addressed in Task 5.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 12

Task 5: Clean the Data

The final task is to clean the worksheet of the unwanted rows of data. The result is that

the row 1 (which is empty) will be deleted, making the headers the first row, and every row that

contains indications of a dividend or unwanted additional headers will be deleted. This is quite

easy considering that all the desired data in the worksheet is either a date or a value, and

unwanted data will be text. Hence, the subroutine removes row 1 (making row 2 headers the new

row 1), iterates across each row (from “LastRow” value up to row 2), and uses an “If” statement

to determine if the data in column B of the selected row contains text. If it contains text, then the

entire row is deleted. Column B is checked since the dividend data is always contained in

column B, and the unwanted additional headers will always exist in column B. The code is

shown in Table 7 (Appendix A) and described in Table 8 (Appendix A).

Finally, the 5 separate subroutines are combined into a single subroutine as shown in

Table 11 (Appendix A). Although the subroutine can be run directly from the VBE using the run

icon or pressing F5, a command button can be added to the “IO” worksheet to run without the

VBE being open. Appendix E provides the steps to add the button and assign the subroutine are

provided below.

ADDITIONAL CONSIDERATIONS

Several other considerations should be noted regarding the method demonstrated in this

paper. The main consideration is that if the program is structurally dependent, then it will not run

if the structure of the url changes. In the case of the program in this paper, if the Yahoo Finance

url changes then the user must discover the new url and parameters and modify the code in

several places. Additionally, this method depends heavily on the data being structured in an

HTML table element, as was seen in this example where the webpage had many tables but we

wanted to only extract data from table 15. There are cases (such as eBay) wherein the entire page

is encapsulated in a single table and parsing and cleaning the desired data requires additional

VBA code. The WQ tool is also browser dependent, meaning the WQ uses Microsoft Internet

Explorer as the browser application, and the latest version should be installed on the user

computer.

There are many cases where it is not feasible to automate the WQ tool. If a webpage

stores session variables, then the variable values are usually different each time the webpage is

called. Session variables are parameters that are stored on the server and not displayed into the

source of the webpages. Hence, it may be impossible to create a web query unless the user

knows the value of the session variables ahead of time, which is not usually the case. And while

websites using the GET method retrieves webpages based on the url concatenated with the

parameter query string (as is the case in this paper), the POST method requires a different

process that requests the webpage by sending the query string parameters to the server, which

may not always readily be accomplished using the WQ tool without significant modification to

the code. In this case the user may have to create and automate an internet query (iqy) file (How

to Create Web Query (.iqy) Files, 2003). Additionally, there is no frames support for the WQ

tool, and sites requiring authentication and passwords present additional challenges of writing

workaround code.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 13

There are often ethical and legal considerations to be made when web scraping in

general. Some websites may strictly prohibit it, and while others may not, it may create an undue

heavy burden on the server from which webpages are extracted. FaceBook® and Google®

strictly prohibit any programmatic approach to extract data from their webpages and will take

measures such as closing an account or blocking an IP to prevent web scraping. There are also

many legal cases regarding the use of web scraping (Web scraping, 2015).

CONCLUSION

Web scraping allows extraction of data from the web. There are many techniques

available for website data extraction, including website provided APIs, web services, RSS feeds,

and file downloads, among others. Web scraping software is also available as freeware or paid

subscription, and one can even developed their web scraping software. This paper has shown that

when other technologies and software are not readily available, the automation of the Excel WQ

tool can facilitate data extraction from the Web. Additionally, using Excel as the data repository

and VBA allows editing and structuring of the extracted data, as well as cleaning of dirty data.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 14

APPENDIX A

Figure 1. Web Query Dialogue Figure 2. Import Data Dialogue

Figure 3. Imported Data

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 15

Figure 4. Historical Prices

Figure 5. Date Ranges and Options

Figure 6. Formatted IO Worksheet

Figure 7. IO Worksheet with Initial URL

Figure 8. URLs Worksheet

Figure 9. URLs Worksheet After Line 2 Code Execution

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 16

Figure 10. URLs Worksheet After Lines 3-7 Code Execution

Figure 11. IO Worksheet After All Lines of Code Executed

Figure 12. Truncated Output After 2 Iterations

Table 1. Task 1 VBA Code

Line Code

1

2

3

4

5

6

7

8

9

10

11

Sub Extract_Webpage_URLs()

Sheets("URLs").Cells.Clear: Sheets("Prices").Cells.Clear

Sheets("IO").Select: Range("A7:J8").ClearContents: Range("B10").ClearContents

Range("B2") = "http://finance.yahoo.com/q/hp?s=" & Range("B1")

InitialURL = Range("B2")

Sheets("URLs").Select

Dim WebPage As Object

Set WebPage = CreateObject("InternetExplorer.Application")

WebPage.Visible = False

WebPage.NAVIGATE InitialURL

Application.Wait (Now() + TimeValue("0:00:10"))

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 17

12

13

14

15

16

17

NumURLs = WebPage.document.getElementsByTagName("a").Length

For i = 1 To NumURLs - 1

 Cells(i, 1) = WebPage.document.getElementsByTagName("a").Item(i)

Next

WebPage.Quit: ActiveWorkbook.Save

End Sub

Table 2. Task 1 VBA Code Description

Line Code Description

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Create the subroutine named Extract_Webpage_URLs.

Clear the previous contents of the URLs and Prices worksheets.

Select the IO worksheet and clear the contents of previous cells and ranges.

Set the Initial URL in cell B2 to the URL “http://finance.yahoo.com/q/hp?s=”

concatenated with the stock symbol in cell B1.

Name a new variable InitialURL and set it to the url stored in cell B2.

Select the URLs worksheet.

Declare and name a new object WebPage.

Set the WebPage object to Internet Explorer (IE) browser application.

Hide the IE application (browser session) when it opens.

Navigate to the Initial URL (InitialURL) that was set in line 5.

Wait 10 seconds while the page loads (otherwise the application may time out).

Name a new variable NumURLs to count how many urls are in the webpage using

the HTML DOM method (getElementsByTagName("a")) and the Length method.

Set a For-Next loop to iterate through all the urls in the webpage; from i = 1 to

NumURLs-1.

For each iteration (i), use the HTML DOM method (getElementsByName) to extract

each url from the webpage and copy the extracted urls into the sequential rows of

column A in the URLs worksheet.

Continue the Next iteration; i.

Close the IE browser application and save the workbook.

End the subroutine.

Table 3. Task 2 VBA Code

Line Code

1

2

3

4

5

6

7

8

9

10

Sub Extract_Page_Navigation_URLS()

Sheets("URLs").Select

With ActiveSheet: LastRow = .Cells(.Rows.Count, "A").End(xlUp).Row: End With

For i = LastRow To 1 Step -1

 If Left(Cells(i, 1), 30) <> "http://finance.yahoo.com/q/hp?" Then

 Rows(i).EntireRow.Delete

 End If

Next

ActiveWorkbook.Save

End Sub

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 18

Table 4. Task 2 VBA Code Description

Line Code Description

1

2

3

4

5-7

8

9

10

Create the subroutine named Extract_Page_Navigation_URLS.

Select the URLs worksheet.

Name and set a new variable LastRow and use a VBA method (Cells(.Rows.Count,

"A").End(xlUp).Row) to count the number of rows in the worksheet.

Set a For-Next loop to iterate through all the urls in the webpage; from i = LastRow to

1 (reverse order) in increments of 1.

For each iteration, use an If function to delete the rows using a VBA method

(Rows(i).EntireRow.Delete) for any url that does not equal

"http://finance.yahoo.com/q/hp?" when counting from the left of the url, using the

VBA Left function.

Continue the Next iteration; i.

Save the workbook.

End the subroutine.

Table 5. Task 3 VBA Code

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Sub Extract_Parameters_Values()

Range("A:A").RemoveDuplicates Columns:=1

Range("A:A").Select

Selection.TextToColumns Destination:=Range("A1"), Other:=True, OtherChar:="&"

Rows(1).Select: Selection.Replace What:="=*", Replacement:=""

Rows(2).Select: Selection.Replace What:="*=", Replacement:=""

Columns(1).EntireColumn.Delete

Range("A1:I2").Copy: Sheets("IO").Select

Range("A7").Select: Selection.PasteSpecial Paste:=xlPasteValues

Range("J7") = (Range("I8") / Range("H8")) + 1

ParameterString = ""

For i = 1 To 8

 ParameterString = ParameterString & "&" & Cells(7, i) & "=" & Cells(8, i)

Next

Range("B10") = Range("B2") & ParameterString & "&y="

Range("B1").Select: ActiveWorkbook.Save

End Sub

Table 6. Task 3 VBA Code Description

Line Code Description

1

2

3

4

5

Create the subroutine named Extract_Parameters_Values.

Select the URLs worksheet and remove duplicate rows using the RemoveDuplicates

method.

Select column A.

Use the TextToColumns method to parse parameter/value combinations into adjacent

columns using the “&” delimiter.

Select row 1 and replace text containing the equal sign and anything to the right of it

with an empty string. This results in the parameters.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 19

6

7

8

9

10

11

12

13

14

15

16

17

Select row 2 and replace text containing the equal sign and anything to the left of it

with an empty string. This results in the parameter values.

Delete the first column (column A).

Copy the range of data in the URLs worksheet and select the IO worksheet.

Paste the data in the range in the IO worksheet.

Calculate the total number of pages as the total records divided by records per page.

Name a new variable ParameterString and set it to an empty string.

Set a For-Next loop to iterate through the 8 parameters and values; i = 1 to 8.

For each iteration, concatenate the parameter/value combinations from (row 7, column

i) and (row 8, column i).

Continue the Next iteration; i.

Create the Static URL in cell B10 using the Initial URL in cell B2, concatenated with

the complete parameter string from lines 11-13, concatenated with y=.

Select cell B1 and save the worksheet.

End the subroutine.

Table 7. Task 4 VBA Code

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Sub Get_Stock_Data()

Application.ScreenUpdating = False: Sheets("IO").Select

RecordsPerPage = Range("H8"): TotalRecords = Range("I8")

TotalPages = Range("J7"): InitialURL = Range("B10")

WqURL = "URL;" & InitialURL

Sheets("Prices").Select: Cells.Clear

For i = 0 To TotalPages – 1

 y = i * RecordsPerPage

 DynamicWqURL = WqURL & y

With ActiveSheet: LastRow = .Cells(.Rows.Count, "A").End(xlUp).Row: End With

With ActiveSheet.QueryTables.Add(Connection:=DynamicWqURL, _

 Destination:=Cells(LastRow + 1, 1))

 .WebTables = "15"

 .Refresh BackgroundQuery:=False

End With

 With ActiveSheet: LastRow = .Cells(.Rows.Count, "A").End(xlUp).Row: End With

 Rows(LastRow).EntireRow.Delete

Next

Application.ScreenUpdating = True: ActiveWorkbook.Save

End Sub

Table 8. Task 4 VBA Code Description

Line Code Description

1

2

3

Create the subroutine named Get_Stock_Data.

Stop updating the screen and select the IO worksheet.

Name and set new variable RecordsPerPage to the value in cell H8, and name and

set a new variable TotalRecords to the value in cell I8.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 20

4

5

6

7

8

9

10

11-14

15

16

17

18

19

Name and set new variable TotalPages to the value in cell J7, and name and set a

new variable StaticURL to the url stored in cell B10.

Name and set a new variable WqURL using the text string “URL;” concatenated with

the StaticURL from line 4.

Select the Prices worksheet and clear all previous data.

Set a For-Next loop to iterate through the TotalPages value; i = 0 to TotalPages-1.

Name and set a new dynamic variable y to the iteration number (i) multiplied by the

RecordsPerPage value.

Name and set a new dynamic variable DynamicWqURL to the WqURL concatenated

with the dynamic value of variable y.

Name and set a new variable LastRow and use a VBA method (Cells(.Rows.Count,

"A").End(xlUp).Row) to count the number of used rows in the worksheet.

Execute the web query using the DynamicWqURL from line 10, downloading the

data into the destination cell of the worksheet located at the first cell below the last

used row (calculated in line 10).

Recalculate the LastRow variable

Delete the row located at the location of the last used row in the worksheet.

Continue the Next iteration; i.

Update the screen and Save the workbook

End the subroutine.

Table 9. Task 5 VBA Code

Line Code

1

2

3

4

5

6

7

8

9

10

Sub Clean_Data()

Rows(1).EntireRow.Delete

With ActiveSheet: LastRow = .Cells(.Rows.Count, "A").End(xlUp).Row: End With

For i = LastRow To 2 Step -1

 If WorksheetFunction.IsText(Cells(i, 2)) = True Then

 Rows(i).EntireRow.Delete

 End If

Next

ActiveWorkbook.Save

End Sub

Table 10. Task 5 VBA Code Description

Line Code Description

1

2

3

4

5-6

7

Create subroutine named Clean_Data.

Delete the first row in the Prices worksheet.

Name and set a new variable LastRow and use a VBA method (Cells(.Rows.Count,

"A").End(xlUp).Row) to count the number of used rows in the worksheet.

Set a For-Next loop to iterate through all the rows in the webpage; from i = LastRow

to 2 (reverse order) in increments of 1.

For each iteration, use an If function to delete the rows containing text using a VBA

method (WorksheetFunction.IsText).

End the If function statement.

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 21

8

9

10

Continue the Next iteration; i.

Save the workbook.

End the subroutine.

Table 11. Single Subroutine Combining 5 Subroutines

Line Code

1

2

3

4

5

6

7

8

9

Sub Stock_Date_WQ()

Call Extract_Webpage_URLs

Call Extract_Page_Navigation_URLS

Call Extract_Parameters_Values

Call Get_Stock_Data

Call Clean_Data

Range("A1").Select

MsgBox "Finished"

End Sub

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 22

APPENDIX B

To display the Developer tab in the Excel menu ribbon, perform the following steps.

Step 1. Open Excel 2016.

Step 2. Click on the “File” tab as shown in Figure 13.

Step 3. In the window that opens, navigate the far left pane to last menu item and click on

“Options.”

Step 4. In the Excel Options dialogue box opens, navigate the far left pane and click on

“Customize Ribbon.”

Step 5. In the far right side of the window, inside the “Main Tabs” section, select the

“Developer” box as shown in Figure 14.

Step 6. Click the OK button.

Step 7. Return to the main menu and click on the “Developer” tab and note the far left group

named “Code,” as shown in Figure 15.

Figure 13. Menu Bar Displaying File Tab

Figure 14. Excel Options Dialogue

Figure 15. Developer Tab

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 23

APPENDIX C

To open the VBE, insert a new module and write a VBA subroutine, perform the following steps

(with Excel open).

Step 1. Click on the Developer tab, as shown in Figure 6.

Step 2. Click on the icon labeled Visual Basic in the Code group (far left icon), also shown in

Figure 6 (Appendix A). The Visual Basic Editor will open as shown in Figure 16 below.

Note that previous versions of Excel will appear slightly different, showing 3 worksheets

instead of 1. Also note the VBE can be opened using Alt+F11.

Step 3. To insert a new module, click the Insert menu option and select Module, as shown in

Figure 17. Note the module’s VBA programming pane opens to the right, and the new

module is named Module1, as shown in Figure 18.

Figure 16. Visual Basic Editor

Figure 17. VBE Module

Figure 18. Visual Basic Editor Programming Pane

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 24

APPENDIX D

 Table 12. Web Query Macro VBA Code

Line Code

1
2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24
25

With ActiveSheet.QueryTables.Add(Connection:= _
"URL;http://finance.yahoo.com/q/hp?s=WMT", Destination:=Range("A1"))
 .CommandType = 0

 .Name = "hp?s=WMT"

 .FieldNames = True

 .RowNumbers = False

 .FillAdjacentFormulas = False

 .PreserveFormatting = True

 .RefreshOnFileOpen = False

 .BackgroundQuery = True

 .RefreshStyle = xlInsertDeleteCells

 .SavePassword = False

 .SaveData = True

 .AdjustColumnWidth = True

 .RefreshPeriod = 0

 .WebSelectionType = xlSpecifiedTables

 .WebFormatting = xlWebFormattingNone

 .WebTables = "15"
 .WebPreFormattedTextToColumns = True

 .WebConsecutiveDelimitersAsOne = True

 .WebSingleBlockTextImport = False

 .WebDisableDateRecognition = False

 .WebDisableRedirections = False

 .Refresh BackgroundQuery:=False

End With

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 25

APPENDIX E

Add the Command Button to the Worksheet

Step 1. Select the IO worksheet.

Step 2. Click the Developer tab

Step 3. Under the Controls group, select the Insert dropdown list, and select the button icon

(first icon on the left under the Form Controls section.

Step 4. Click anywhere on the IO worksheet and the Assign Macro screen opens. Select the

Macro name Stock_Data_WQ and click OK as shown in Figure 19.

The button text can be edited by right-clicking the button, highlighting the existing text

(“Button”) and typing over the text, like “Run.” Likewise, the button can be relocated on the

worksheet by right-clicking it, dragging it to the desired location, releasing it and selecting the

option Move Here. Figure 20 reflects the button located over cell C1 in the worksheet.

Figure 19. Assign Macro Dialogue

Figure 20. IO Worksheet Run Button

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 26

REFERENCES

Brody, H. (2012). I Don’t Need No Stinking API: Web Scraping For Fun and Profit. Retrieved

November 5, 2015, from https://blog.hartleybrody.com/web-scraping/

Bordy, H. (2013). Ultimate Guide to Web Scraping. Lean Publishing.

Data Scraping. (2015). In Wikipedia, The Free Encyclopedia. Retrieved October 19, 2015,

from https://en.wikipedia.org/w/index.php?title=Data_scraping&oldid=679724055

Document Object Model. (2015). In Wikipedia, The Free Encyclopedia. Retrieved October 26,

2015, from

https://en.wikipedia.org/w/index.php?title=Document_Object_Model&oldid=685393325

Get external data from a Web page. (n.d.). Retrieved October 19, 2015, from

https://support.office.com/en-us/article/Get-external-data-from-a-Web-page-708f2249-

9569-4ff9-a8a4-7ee5f1b1cfba

How to Create Web Query (.iqy) Files. (2003). Retrieved November 5, 2015, from

https://support.microsoft.com/en-us/kb/157482

HTML DOM getElementsByName() Method. (n.d.). Retrieved October 29, 2015, from

http://www.w3schools.com/jsref/met_doc_getelementsbyname.asp

HTML DOM getElementsByTagName() Method. (n.d.). Retrieved October 29, 2015, from

http://www.w3schools.com/jsref/met_element_getelementsbytagname.asp

HTML DOM innerHTML Property. (n.d.). Retrieved October 20, 2015, from

http://www.w3schools.com/jsref/prop_HTML_innerHTML.asp

HTTP methods: GET vs. POST. (n.d.). Retrieved October 20, 2015, from

http://www.w3schools.com/tags/ref_httpmethods.asp

Import external data from a complex web site into Excel. (n.d.). Retrieved November 5, 2015,

from http://datatoolbar.com/Import-external-data-from-a-complex-web-page-into-

Excel.html

International Journal of People-Oriented Programming (IJPOP). (n.d.). Retrieved November 11,

2015, from http://www.igi-global.com/journal/international-journal-people-oriented-

programming/41021.

Korpela, J. (2003). methods GET and POST in HTML forms - what's the difference? Retrieved

October 20, 2015, from http://www.cs.tut.fi/~jkorpela/forms/methods.HTML

Korol, J. (2014). Microsoft Excel 2013 programming by example with VBA, XML, and ASP.

Dulles, Va.: Mercury Learning and Information.

Levitt, J. (n.d.). From EDI To XML And UDDI: A Brief History Of Web Services -

InformationWeek. Retrieved October 15, 2015, from

http://www.informationweek.com/from-edi-to-xml-and-uddi-a-brief-history-of-web-

services/d/d-id/1012008?

Pieterse, J. (2006). Using Parameters With Web Queries. Retrieved October 19, 2015, from

http://www.jkp-ads.com/articles/webquery.asp?AllComments=True

Pull data into Microsoft Excel with Web queries - TechRepublic. (2006). Retrieved October 19,

2015, from http://www.techrepublic.com/article/pull-data-into-microsoft-excel-with-web-

queries/

Rice, F. (2004). Different Ways of Using Web Queries in Microsoft Office Excel 2003.

Retrieved October 20, 2015, from https://msdn.microsoft.com/en-

us/library/office/aa203721(v=office.11).aspx

Journal of Technology Research Volume 7

Programmatic web data extraction, Page 27

Roos, D. (2007). "How to Leverage an API for Conferencing." HowStuffWorks.com. Retrieved

October 19, 2015, from http://money.howstuffworks.com/business-communications/how-

to-leverage-an-api-for-conferencing.htm.

The HTML DOM Document Object. (n.d.). Retrieved October 26, 2015, from

http://www.w3schools.com/jsref/dom_obj_document.asp

Visual Basic for Applications. (n.d). In Wikipedia, The Free Encyclopedia. Retrieved

October 22, 2015, from

https://en.wikipedia.org/w/index.php?title=Visual_Basic_for_Applications&oldid=68289

9862

Walkenbach, J. (2013). Excel 2013 power programming with VBA. Hoboken, N.J.: Wiley.

Web Data Extraction Software Made Simple. (n.d.). Retrieved November 6, 2015, from

http://datatoolbar.com/

Web Scraper. (n.d.). Retrieved October 19, 2015, from http://webscraper.io/

Web scraping. (2015). In Wikipedia, The Free Encyclopedia. Retrieved November 5, 2015, from

https://en.wikipedia.org/w/index.php?title=Web_scraping&oldid=689058873

Web service. (n.d.). In Wikipedia, The Free Encyclopedia. Retrieved October 15, 2015,

from https://en.wikipedia.org/w/index.php?title=Web_service&oldid=685767160

Wittwer, J. (n.d.). Excel Web Query Secrets Revealed. Retrieved October 19, 2015, from

http://www.vertex42.com/News/excel-web-query.HTML

XML Web Services. (n.d.). Retrieved October 15, 2015, from

http://www.w3schools.com/xml/xml_services.asp

