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ABSTRACT   

 

Databases of operational and customer activity are a critical resource for an organization 

not only to support business processes but also for use in strategic planning. The databases are 

analyzed within an organization and shared with trading partners to improve efficiency and 

direct marketing efforts. The frequent item set hiding problem is an area of active research to 

study approaches for hiding the sensitive knowledge patterns before disclosing the data for 

mining outside the organization. Several methods address hiding sensitive item sets including an 

exact approach that generates an extension to the original database that, when combined with the 

original database, limits the discovery of sensitive association rules without impacting the non-

sensitive information.  To generate the database extension, this method formulates a constraint 

optimization problem (COP). Solving the COP formulation is the dominant factor in the 

computational resource requirements of the exact approach. This research developed a heuristic 

that improves the performance of an exact hiding method by reducing the size of the COP 

formulation without significantly affecting the quality of the solutions generated. Results of the 

heuristic processing were compared with an existing exact approach in terms of size of database 

extension, ability to hide sensitive data, and impact on non-sensitive data.   
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INTRODUCTION   

 Typically the production and distribution of a product is a result of the cumulative 

value-adding effort of multiple organizations (Tsai, Rahgu, & Shao, 2013). This practice has 

changed management perspective from focusing on activities within an individual organization 

to focusing on activities of all organizations participating in a value chain. Effective management 

of product development, sourcing, production, and distribution tasks to achieve a sustainable 

competitive advantage for the value chain. Management of the value chain depends on shared 

information so that value chain partners may control the day-to-day movement of goods and 

material and coordinate long-term plans for sustainable profitability.  

 Since the sharing of information is critical to its success and operation, many value 

chain agreements include data sharing provisions. Despite the realization that the management of 

the value chain requires information, participating organizations are reluctant to share all of their 

data. As an example, organizations analyze their transaction purchasing data to determine 

customer buying behavior. Data mining of transaction data is used to discover association rules 

which identify products that are purchased together. The identification of association rules can be 

useful in decisions concerning product pricing, promotion activity, retail layout, and website 

design (Adamo, 2012; Bertino, Fovino, & Povenza, 2005). Data mining techniques that reveal 

this critical information to an organization may also be used by an outside organization who 

examine the shared data. As a result, the competitive efforts of an individual organization may be 

compromised. Organizations are looking for solutions to protect their sensitive association rules 

while participating in value chains and fulfilling the requirements of data sharing agreements 

(Bertino, et al., 2005; Giannotti, Lakshmanan, Monreale, Pedreschi, & Wang, 2013; Menon & 

Sarkar, 2007; Oliveira & Zaiana, 2002; Verkios et al., 2004). 

The problem limiting the discovery of sensitive item sets in shared databases without 

impacting other non-sensitive information has been the focus of much research (Atallah, 

Elmagarmid, Ibrahim, Bertino, & Verykios, 1999; Atallah, et al., 2009; Evfimievski,  Srikant, 

Agrawal, & Gehrke, 2004; Gkoulalas-Divanis, & Verykios, 2009a, 2009b; Menon, et al., 2005; 

Oliveira & Zaïane, 2002; Verykios, Elmagarmid, Bertino, Saygin, & Dasseni, 2004). This is 

described as the frequent item set and association rule hiding problem or frequent item set hiding 

(FIH) problem, for brevity (Aggarwal & Philip, 2008; Gkoulalas-Divanis, A. & Verykios, V. S,. 

2009a). Frequent item sets are sets of items that reoccur in a database and identifying them is 

usually the first step toward association rule, correlation rule and sequential pattern mining 

(Gkoulalas-Divanis, & Verykios, 2009b; Menon, et. al., 2005).The frequent item set hiding 

problem refers to limiting the disclosure of sensitive rules that may be discovered in a shared 

database through data mining techniques.  To avoid disclosing strategic association rules with 

external parties it is important to hide sensitive item sets before sharing data.  The underlying 

NP-hard problem of hiding sensitive relationships before sharing databases is well established 

(Atallah, et al., 1999; Domadiya & Udai, 2013; Evfimievski, et al., 2004; Lin (2014); Oliveira & 

Zaïane, 2003; Saygin, Verykios, & Clifton, 2001; Stavropoulos, Verykios & Kagklis (2015); 

Verykios et al., 2004). Since its introduction, research in the frequent item set hiding problem 

has included many new approaches and improvements in existing approaches (Atallah, et al., 

1999; Domadiya & Udai, 2013; Evfimievski, et al., 2004; Lin (2014); Oliveira & Zaïane, 2003; 

Saygin, Verykios, & Clifton, 2001; Stavropoulos, Verykios & Kagklis (2015); Verykios et al., 

2004). 
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A number of approaches have been suggested to address the frequent item set hiding 

problem by limiting the disclosure of sensitive rules that may be discovered in a shared database 

through data mining techniques.  There is active research in improving both the scalability and 

the quality of the techniques.  Many of the proposed methodologies for association rule hiding 

are of a heuristic nature in order to effectively tackle the combinatorial nature of the problem. 

Heuristic approaches are efficient, fast algorithms that selectively sanitize a set of transactions 

from the original database to hide the sensitive association rules. Heuristic algorithms are 

attractive is their computational and memory efficiency which allows them to scale well to very 

large datasets. However, in general heuristic methodologies make locally optimal decisions that 

are usually not globally optimal. 

Another category of approaches, known as border-based processes, are heuristic 

approaches that select item sets frequently occurring (statistically significant, positive border) 

and item sets infrequently occurring (statistically insignificant, negative border) for sanitation. 

The borders are used in an attempt to compress the representation of many item sets into one set 

(Gkoulalas-Divanis & Verykios, 2009b).  In general, the quality of the borders directly impacts 

the quality of the sanitized database (Gkoulalas-Divanis & Verykios, 2009b). 

The final category, exact hiding approaches comprise the most recent direction of 

research, Theses approaches hide item set associations through a constraint optimization problem 

that guarantees an optimal hiding solution, if it exists (Gkoulalas-Divanis & Verykios (2009b). 

Exact hiding approaches operate by transforming the hiding problem into an equivalent 

optimization problem, where the objective is to minimize the distortion that is cased to the 

original database to facilitate the hiding of all the sensitive knowledge with the least side-effects. 

Exact algorithms operate on the original database by considering all possible solutions for the 

problem in order to find the one that optimizes the criterion function. An exact approach 

typically provides a superior solution in terms of hiding sensitive item sets but is usually much 

slower than a heuristic approach because of the processing time required by the integer 

programming solver for a problem with many constraints (Gkoulalas-Divanis & Verykios, 

2009b).  

Gkoulalas-Divanis and Verykios (2009b) introduce the first exact methodology that 

strategically hides sensitive item sets by generating an extension to the original database that 

includes nonsensitive data. This approach applies an extension to the original database instead of 

modifying existing transactions. The extended potion of the database contains transactions that 

lower the importance of the sensitive patterns to where they become uninteresting from the 

perspective of the data mining algorithm while minimally affecting the importance of the 

nonsensitive ones. The hiding process maximizes the data utility of the sanitized database by 

introducing the least possible amount of side-effects.  Extending the original database for 

sensitive item set hiding provides  optimal solutions to an extended set of hiding problems, 

compared to previous approaches, as well as to lead to hiding solutions of typically superior 

quality (Gkoulalas-Divanis & Verykios, 2009b, 2010). To address scalability, Gkoulalas-Divanis 

and Verykios (2009b) suggest a few techniques including a database partitioning methodology 

and the application of a distributed processing approach to the solution of the COP.   

This research developed a heuristic that addresses the scalability of the exact hiding 

method presented in Gkoulalas-Divanis and Verykios (2009b) without significantly affecting the 

quality of the solutions generated. In the Gkoulalas-Divanis and Verykios (2009b) method, the 

number of constraints in the COP formulation depends upon the number of item sets in the 

border of frequent and infrequent item sets. This research developed the substitution heuristic to 
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reduce the computational cost of the COP process. The substitution heuristic replaces multiple 

items in the border of frequent and infrequent item sets with composite variables so that there are 

fewer constrains in the formulation of the COP when compared to the Gkoulalas-Divanis and 

Verykios (2009b) method.  The heuristic was developed with the intention that there would be 

little impact to the quality of the result when compared to the Gkoulalas-Divanis and Verykios 

(2009b) approach.   

As in the evaluation of Gkoulalas-Divanis and Verykios (2009b) exact hiding algorithm, 

the quality of the exact solutions generated by this research was assessed using the distance 

metric and quality standards for the item sets. Distance quantifies the number of items included 

in the COP generated database extension. A smaller value for distance is preferred because it 

indicates less “harm” to the original database by the sanitization process.  Quality standards also 

consider the status of the item sets before and after the sanitation process. This means that all 

sensitive item sets are infrequent, frequent item sets remain frequent, infrequent item sets remain 

infrequent, and no new frequent item sets have been introduced to the sanitized database. In 

addition, experiments were analyzed to build a rationale for appropriate application of the 

heuristic. 

 

EXPERIMENTAL DESIGN 

 

  This research developed the substitution heuristic to address the computational cost of 

an exact hiding algorithm. To assess the heuristic, the exact hiding algorithm of Gkoulalas-

Divanis and Verykios (2009b) was recreated. A second version of this algorithm was 

implemented then modified to include the substitution heuristic processing. Problem instances 

were defined based on publically available datasets. Both algorithms processed using a set of 

problem instances. The processing results were compared and analyzed for performance and 

quality. In the discussion that follows, the recreation of the exact hiding algorithm of Gkoulalas-

Divanis and Verykios (2009b) is referred to as the Exact Algorithm.  The recreation of the exact 

hiding algorithm of Gkoulalas-Divanis and Verykios (2009b) that incorporates the substitution 

heuristic processing is referred to as the Substitution Algorithm. 

 

Problem Instances 

 

 A problem instance is specified by a dataset (�ℴ), minimum frequency (mfreq), and set 

of sensitive item sets (S).  Dataset (�ℴ) represents the original database of transactions that 

contains sensitive and non-sensitive relationships that may be discovered through data mining 

techniques. Support, discovered through an examination of the transactions, represents the 

measure of how frequent a relationship appears in the database. The minimum frequency mfreq 

refers to the threshold of interest in relationships; relationships in the data may be considered 

interesting if their support is greater than the mfreq. For example, mfreq = .3 means that item sets 

with support greater than or equal to .3 are considered frequent; item sets with support less than 

.3 are consider infrequent. 

This research used the same real-world datasets publicly availability through the Frequent 

Item set Mining Implementations (FIMI) Repository and the Data Mining Forum that were used 

in the evaluation of Gkoulalas-Divanis & Verykios (2009a) including the Chess, Mushroom, and 

BMS-Webview-1 datasets (FIMF, 2014). The BMS-Webview-2 dataset was also used in the 
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Gkoulalas-Divanis and Verykios (2009b) research but was not available at the time of this study 

(FIMI, 2014).   

Each dataset exhibits a unique distribution of item sets so investigation was required to 

select an appropriate minimum frequency (mfreq) for mining the dataset. The minimum 

frequency used to mine a dataset influences the number and support of item sets considered 

frequent and infrequent.  The minimum frequency used in the problem instances for this study 

yielded a sufficient number of item sets that could be identified as sensitive and a small enough 

(in many cases) number of infrequent item sets so that the solver could process the COP 

formulation.  A relationship exists between the mfreq and the number of items sets considered 

frequent and infrequent. When mining a dataset, the higher the mfreq, the smaller the number of 

frequent item sets and the larger the number of infrequent item sets. The longer the size of the 

sensitive items sets in terms of the number of items within the item set, the larger the size of the 

infrequent item sets. 

The Exact Algorithm and the Substitution Algorithm were processed for each problem 

instance. As a result, there were two processes for each of the 18 problem instances for a total of 

36 experiments. Table 1 (Appendix) describes the 18 problem instances used in experiments to 

compare The Exact Algorithm and the Substitution Algorithm. Support Category Low identifies 

sensitive item sets with support close to the minimum threshold while High identifies sensitive 

item sets with higher support values. The result of each experiment was evaluated in terms of 

quality and performance. Performance was evaluated both in terms of the number of constraints 

generated in the COP formulation and solver processing time where smaller numbers for these 

measurements is desirable. The quality evaluation considered the distance measurement and 

quality standards for frequent, infrequent, and sensitive item sets. Table 2 (Appendix) illustrates 

the data collected during each experiment.  

 Implementation of the Exact Algorithm is accomplished through a four-step process:  

(1) Generation of item sets  

(2) Identification of the sensitive item sets  

(3) Identification of the frequent item sets and the infrequent items on the border between 

frequent and infrequent item sets,  

(4) Formulation of the COP based on the items sets on the border between frequent and 

infrequent item sets. 

(5) Execution of the solver.  

Constraints required in the formulation of the COP are determined by exploiting the borders and 

the “cover” relationships among the frequent and infrequent item sets.  Supersets of item sets are 

said to “cover” subsets of item sets. Constraints generated for the COP need only consider 

supersets. As a result, the number of constraints in the COP is greatly reduced yet the process 

provides the same solution as solving for the entire set of item sets (Gkoulalas-Divanis & 

Verykios, 2009b; Sun & Yu, 2005).  

Implementation of the Substitution Algorithm is very similar process; two additional 

steps are require:  

(1) Generation of item sets  

(2) Identification of the sensitive item sets  

(3) Identification of the frequent item sets and the infrequent items on the border between 

frequent and infrequent item sets 

(3b) Generation of composite item sets based on the frequent and infrequent item sets 

identified in step 3. 
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(4) Formulation of the COP based on the items sets on the border between frequent and 

infrequent item sets. 

 (5) Execution of the solver. 

(5b) Mapping of the composite item sets back to their original values.  

Details of the logic of the Substitution Algorithm and the generation of the composite item sets 

follows. 

 

Substitution Heuristic 

 

Solver resource requirements increase with the number of item sets included in the COP 

formulation process. This study evaluates a second category of heuristics that finds instances for 

substituting a subset of items with a composite variable, so there are fewer item sets in the COP 

formulation process. The items are selected in a way that minimally affects the quality of the 

solution when compared to the solution derived by the Exact Algorithm.  Presented with a fewer 

number of item sets, the Substitution Algorithm generates a COP formulation that includes fewer 

variables and constraints than the Exact Algorithm COP formulation. Based on a smaller COP, 

the solver processes the Substitution Algorithm formulation with less resources and generates a 

transaction set that includes the composite items. A mapping process reviews the solver solution 

and replaces each composite item in the transaction set with the original items to create the 

database extension, �x, that is close to the database extension created by the Exact Algorithm. 

Candidate item sets for the substitution process are selected from the border of frequent 

and infrequent item sets in a way that minimally affects the quality of the solution. Candidate 

item sets satisfy the following conditions: the item set is not a sensitive item set and all 

occurrences of the item set follow a consistent pattern within the border of item sets. A 

consistent pattern is described as a subset of items that appear in the same item set of the positive 

border, and, appear with the same item(s) in all instances of the negative border. For example, 

given a positive border that includes item set {a, b, c}, and a negative border that includes item 

sets {a, d} and {b, d}. The subset {a, b} follows a consistent pattern since it appears in the same 

positive border item set, {a, b, c}, and all instances in the negative border are with the same item, 

d. Applying the Substitution Heuristic, candidate subset {a, b} is replaced by composite variable 

C1. The positive border item set {a, b, c} is replaced with {C1, c}, and the negative border item 

sets {a, d} and {b, d} are replaced with {C1, d}. Based on a positive border that includes item set 

{a, b, c}, and a negative border that includes item sets {a, d} and {b, d}, the Exact Algorithm 

COP formulation generates 13 constraints for every transaction required to hide the sensitive 

item sets. By comparison, the Substitution Algorithm positive border that includes item set {C1, 

c }, and the Substitution Algorithm negative border that includes item set {C1, d }, the 

Substitution Algorithm COP formulation generates 8 constraints, about 40% fewer, for every 

transaction required to hide the sensitive item sets.  

All item sets in the revised negative border that include only one item are candidates for 

the substitution heuristic. These items do not appear with any other item in either the revised 

positive or negative borders because, by definition, all supersets of negative border item sets are 

frequent item sets. For example, given a negative border that includes item sets {e} and {f}. 

Applying the Substitution Algorithm, candidates {e} and {f} are replaced by composite variable 

C2 so the Substitution Algorithm negative border includes item set {C2}. Based on this example, 

the Exact Algorithm COP formulation generates six constraints for every transaction required to 

hide the sensitive item sets. By comparison, the Substitution Heuristic COP formulation 
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generates three constraints, 50% fewer, for every transaction required to hide the sensitive item 

sets.  

Like the other COP formulation processes, the Substitution Algorithm COP formulation 

process calculates a value for threshold when generating constraints for the item sets of the 

positive and negative border. The value of threshold is determined for each item set in the 

positive and negative border through the same equation used in the Exact Algorithm (Gkoulalas-

Divanis & Verykios, 2009b):  

Threshold = mfreq × (� + � + �ℳ) – sup(I, �o ) 

In this equation, mfreq is the minimum frequency which is used to determine frequent 

and infrequent item sets; � is the number of transactions in �o;  � represents the minimum 

number of transactions required to hide the sensitive item sets; �ℳ is the safety margin, and 

sup(I, �o ) represents an item set’s support which denotes the number of transactions in �o that 

include the item set.   

In some cases, it may be necessary to include a safety margin, SM, which is added to the 

calculated minimum value in determining an appropriate size of the database extension. Safety 

margins can be either predefined or dynamically computed based on properties of database D0. 

Full analysis of the safety margins is outside the scope of this research.  Preliminary experiments 

revealed that the solver could not reach an exact solution in some cases where the support of the 

sensitive item set was close to the border of the frequent and infrequent item sets without 

including a safety margin. Therefore, all experiments used a safety margin of 10 matching the 

safety margin of the Gkoulalas-Divanis and Verykios (2009b) experiments.        

Applying the Substitution Algorithm, positive border item sets that include composite 

variables retain the same value for support, sup(I, �o ), that the item set had prior to the 

substitution. As a result, the threshold calculated in the Substitution Algorithm COP formulation 

is the same as the Exact Algorithm COP formulation. Item sets in the negative border with 

composite variables may be created from more than one item set each with a different value for 

support, sup(I, �o ). In this case, the item set with the composite variable adopts the support of 

the item set that has the lowest support of the candidate items. For example, given a positive 

border that includes item set {a, b, c} with sup(I, �o ) = 32, and a negative border that includes 

item sets {a, d} where sup(I, �o ) is 15 and {b, d} where sup(I, �o ) is 20. Applying the 

Substitution Heuristic the positive border includes item set {C1, c } with sup(I, �o ) = 32, and the 

negative border item set{ C1, d } with sup(I, �o ) = 15.   

 Preliminary experiments with the Substitution Algorithm considered three options for 

selecting the appropriate support for the composite variable formed from the substituted 

candidate item sets in the negative border: the highest support, the lowest support, and the 

average support.  There is an inverse relationship between the value of the support and the value 

of the threshold calculated by the COP formulation process. The COP formulation process 

calculates lower thresholds for item sets with higher support. Preliminary experiments where the 

Substitution Algorithm formulation used the highest support and the average support generated 

solutions that were larger than the solutions generated using the lowest support among the item 

sets. Since smaller values for solutions are preferred (representing the transactions in the 

database extension), the Substitution Algorithm COP formulation selects the lowest support 

among the negative border candidate item sets to calculate the threshold for the item set with the 

composite variable. 

In the case of item sets in the revised negative border that include only one item, there are 

typically many candidates for substitution. Candidate item sets are combined until the sum of 
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their individual support, sup(I, �o ), is less than, but very close to, the minimum support 

threshold, msup. The minimum support threshold, msup =  mfreq × �, represents the minimum 

number of occurrences for an item set to be considered frequent. Since the Substitution 

Algorithm COP formulation is calculating a threshold for an (infrequent) item set in the negative 

border, the support should not exceed the minimum support threshold. Once this value is 

reached, a composite variable, representing the combined candidate item sets, is included in the 

formulation of the COP. The support for the composite variable for the COP formulation process 

becomes the sum of the support among the candidates. In the typical case, several composite 

variables are required for the candidate item sets in the revised negative border that include only 

one item.  

Preliminary experiments with the Substitution Algorithm COP formulation considered 

several scenarios to generate composite variables and calculate support for single item negative 

border item sets. Less desirable results were reached in cases where single item negative border 

item sets and their support, sup(I, �o ), were combined in a COP without considering the 

minimum support threshold, msup, of the original database, �o, which separates frequent and 

infrequent item sets. The solver failed to generate a solution in cases where a composite variable 

replaced multiple candidate item sets where the combined support was greater than the minimum 

support threshold. The solver generates larger solutions in cases where the smallest support of 

the candidate item sets or the average support was used in the threshold calculation.  The solver 

generated the smallest solution (considered favorable) when a composite variable was substituted 

for candidate items until the sum of their individual support, sup(I, �o ), was less than, but very 

close to, the minimum support threshold, msup.  

The solver processes the problem formulated by the Substitution Algorithm formulation 

and generates a solution which includes a set of transactions representing the database extension, 

 �x. The set of transactions includes instances of the composite variables which must be mapped 

back to each original item sets.  The Substitution Algorithm Mapping process replaces  

composite variables in the solver solution with the original item sets based on the support, sup(I, 

�o ), of each item set in the original database, �o. Replacements are based on the following 

equation: 

Given: Set of candidate items substituted by composite variable C1: {i1}, {i2}, … { ic} 

where c is the number of items and the support of each item is support(I�, �ℴ)  

 

  The number of occurrences of composite variable mapped to an item becomes 

support(I�, �ℴ)  /  ∑  support(I�, �ℴ�
��� ) 

 

Note: Since partial transactions are not possible, numbers are rounded to the nearest 

whole number. 

 

After the mapping process completes, the database extension,��, is combined with the original 

database, �o, to form a new database, �,which is now ready for sharing.   

Quality standards of the Exact Algorithm and the Substitution Algorithm evaluate 

solutions in terms of the measurement of distance, the securing of sensitive item sets and the 

frequency of the item sets. Distance measurements using the Substitution Algorithm may be 

larger than solutions using the Exact Algorithm. The Exact Algorithm COP formulation is based 

on each item sets support, sup(I, �o ); the Substitution Algorithm COP formulation is based on 

the support value calculated for each composite variable. The Substitution Algorithm COP 
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formulation, by design, should secure sensitive item sets and maintain the frequency of the item 

sets. This means that when mining Database � at  mfreq, all sensitive item sets are infrequent, 

nonsensitive frequent item sets remain frequent, infrequent item sets remain infrequent, and no 

new frequent item sets have been introduced to � that were not in �o. The Substitution 

Algorithm is illustrated in Table 3 (Appendix). 

 

Resources 

 

This study used real-world datasets publicly availability through the Frequent Item set 

Mining Implementations (FIMI) Repository and the Data Mining Forum (Data Mining Forum, 

2014; FIMI, 2014).  The datasets used for the evaluation of the study were the same as those 

used in Gkoulalas-Divanis and Verykios (2009b) and include BMS-WebView-1, Mushroom, and 

Chess. The BMS-Webview-2 dataset was also used in Gkoulalas-Divanis and Verykios (2009b) 

but was not available for this study.    

The process was developed and experiments were conducted with a personal computer  

running with Windows 7 Professional 64-bit operating system and an Intel® Core™ i7 CPU, 

Q820, 1.73 GHz with 4 Gbytes of RAM. No other applications were processing during solver 

execution. Program code included the executable code of Boden (2005) Apriori Implementation, 

version 2.4.9, to assist in the identification of sensitive item sets. Program code was developed 

based on the C++ source code of a special implementation of the iZi algorithm provided by 

Flouvat (2013) to identify the border of frequent and infrequent item sets. All additional 

programs required for algorithm development and experiments were implemented in C++ 

programming code. Eclipse Juno Software Development Kit, version 4.2.1, was installed with 

JRE System Library [JavaSE-1.7] and IBM’s ILOG CPLEX, version 12.4 to read the COP 

formulation, execute the solver, and provide the results of the COP. 

In some cases, the COP formulation was too large for the processing by the solver as 

indicated by the error message: java.lang.OutOfMemoryError: Java heap space (Stack Overflow 

(2014).  The limit of the solver’s processing capability is directly related to the size of the COP 

formulation. The solver failed due to insufficient physical memory when attempting to process 

the COP formulations for the Chess dataset at higher support threshold and for all problem 

instances based on the BMS1-Webview dataset.  Examining the operation system’s performance 

statistics when the solver was processing large COP formulations revealed that the CPU usage 

was at 99% and the Physical Memory was at 99% just prior to the failure of the Java process.  

The solver processed the formulations based on the Chess dataset at the lower support threshold 

and for all problem instances based on the Mushroom dataset. 

 

RESULTS 

 
The performance and quality of the Exact Algorithm and the Substitution Algorithm were 

compared through experiments based on the same problem instance. Table 4 (Appendix) 

compares the results of the experiments. The table reveals the number of substitution candidates, 

the change in the number of constraints, solver runtime and the size of the database extension. 

The Substitution Algorithm formulates a COP that is very close to the size of the COP 

formulated by the Exact Algorithm. The solver run time is very close to the solver run time for 

the Exact Algorithm. The size of the database extension for solutions generated by the 

Substitution Algorithm are about 1% greater than solutions generated by the Hiding Algorithm. 
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The insignificant differences between the performances of the two algorithms can be explained 

by the fact that there were very few candidates for substitution in the Chess and Mushroom 

datasets.  The COP formulation files for the Exact Algorithm and the Substitution Algorithm 

were very similar. However, the Substitution Algorithm COP formulations based on the BMS-

WebView1 dataset were about 90% smaller than the Exact Algorithm. Unfortunately, the 

smallest Substitution Heuristic formulation of about 7 million constraints was too large for 

processing with available resources.  A trend may be observed in the data.  There are more 

candidate variables found with an increase in the number of sensitive item sets and when the 

support level increases from low to high. 

The processing of the solver is the most resource intensive portion of both versions of the 

algorithms.  The most restrictive resource is the memory available on the computer system 

during the solver process. For problem instances four, five, and six based on the Chess dataset 

and all problem instances based on the BMS-WebView1 dataset, the solver had insufficient 

physical memory to process any of the COP formulations. 

 

Dataset Mining Implications 

 

Each dataset exhibits a unique distribution of item sets so investigation is required to 

select an appropriate minimum frequency (mfreq) for mining the dataset. The minimum 

frequency used to mine a dataset influences the number and support of item sets in the border of 

item set.  The minimum frequency used in the problem instances for this study yielded a positive 

border with sufficient item sets that could be identified as sensitive and a negative border that 

was small enough (in many cases) so that the solver could process the COP formulation.  A 

relationship exists between the mfreq and the number of items sets in the border. When mining a 

dataset, the higher the mfreq, the smaller the number of item sets in the positive border and the 

larger the number of item sets in the negative border. The longer the size of the sensitive items 

sets in terms of the number of items within the item set, the larger the size of the item sets in the 

negative border.  

Relationships are observed in data for all problem instances regardless of which 

algorithm was used to formulate the COP. The greater the number of sensitive item sets in a 

problem instance, the larger the COP formulation. The greater the length of the sensitive item 

sets in terms of the number of items within each item set, the larger the COP formulation. The 

higher the support of the sensitive item sets, the larger the COP formulation.  The number of 

transactions required to hide the sensitive item sets (the value of�) has a substantial impact on 

the number of constraints in the COP formulation. In addition, sensitive item sets with very high 

support values required the generation of more transactions to become hidden (higher values 

for�). The higher the support of sensitive item sets, the higher the number of negative item sets 

leading to an increase in the number of constraints in the COP formulation.   

 

Quality 

 

As in the evaluation of the Exact Algorithm based on the Gkoulalas-Divanis and 

Verykios (2009b) algorithm, the quality of the exact solutions were assessed using the distance 

metric and quality standards for the item sets. The solver produced exact solutions for both 

algorithms but the Exact Algorithm consistently produced the ideal (smallest) solution in all 

experiments with the Chess and Mushroom datasets. The Substitution Algorithm results were 
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consistently very close in size to Exact Algorithm’s ideal solution. This is explained by that fact 

that the COP formulations of both algorithms were similar due; there were only a few candidates 

for substitution in the Chess and Mushroom datasets.  The solver failed to process any problem 

instances for the BMS1-WebView dataset due to insufficient resources.  Gkoulalas-Divanis and 

Verykios (2009b) do not report any solver results for this dataset. 

The solver adjusts the variables representing the item sets of the COP in a way that all 

inequalities pertaining to an exact solution are satisfied, while the size of the database extension 

is minimized. In all cases where the solver produced a solution, all sensitive item sets were 

hidden (infrequent). All frequent item sets remained frequent; none were lost or hidden. All 

infrequent item sets remained infrequent, none were lost or became frequent. No new frequent 

item sets were added. In the case of the Substitution Algorithm processing, the occurrences of 

composite variables in the solver solution are mapped back to the original item sets to form the 

database extension. The mapping process confirmed that sensitive item sets were hidden and 

item sets maintained their appropriate status after the database extension is combined with the 

original database.  

 

Performance 

 

All versions of the hiding algorithms are resource intensive in two areas: the 

identification of the border of frequent and infrequent item sets and the processing of the solver. 

Preliminary and final experiments consistently revealed, for all datasets, that the lower the level 

of mfreq, the longer the processing time of the apriori-based algorithms.  In addition, the longer 

the average record length of the dataset or the larger item set lattices, the greater the processing 

time of the apriori-based algorithms.  Random samples of different number of records revealed 

that larger record counts leads to longer processing times. Random samples based on differences 

in the length of the item set lattice revealed that the more items in the lattice, the longer the 

processing times for determining the border of frequent and infrequent item sets.  

The processing of the solver is the most resource intensive portion of all versions of the 

hiding algorithms. Solver processing times are longer for the larger COP formulations.  The most 

restrictive resource for all of the hiding algorithms is the memory available on the computer 

system during the solver process. The limit of the solver’s processing capability is directly 

related to the size of the COP formulation. The solver failed due to insufficient physical memory 

when attempting to process the COP formulations for the Chess dataset at higher support 

threshold (problem instances four, five, and six) and all of the BMS-WebView-1 COP 

formulations (problem instances thirteen through eighteen).  

 

CONCLUSION AND FUTURE RESEARCH  

 

The Substitution Algorithm produced promising results. The Algorithm produced results 

that were close to the Exact Algorithm.  Future research could examine additional methods to 

evaluate datasets as ones that contain potential candidates for substitution items. Future research 

could also focus on discovery patterns or sections of a dataset that contain items that are isolated 

from the remaining items. These isolated item sets could lead to more comprehensive definition 

for item sets that are candidates for substitution.  

All versions of the hiding algorithms are resource intensive in two areas: the 

identification of the border of frequent and infrequent item sets and the processing of the solver. 
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Early in the processing of the hiding algorithms, the border of frequent and infrequent item sets 

is identified, through an apriori-based algorithm, based on mfreq and a collection of sensitive 

item sets. This is the longest running portion of the entire hiding process in terms of elapsed real 

time. Identifying frequent item sets and the positive and negative border of item sets continues to 

be an active area of research. The performance of hiding algorithm is also dependent on the 

composition of the datasets. Evaluating datasets continues to be an active area of research.  

The processing of the solver is the most resource intensive portion of all versions of the 

hiding algorithms. Solver processing times are longer for the larger COP formulations. The most 

restrictive resources for all of the hiding algorithms is the memory available on the computer 

system during the solver process. In problem instances where the solver did not have sufficient 

physical memory to process the larger COP formulations the process failed due to insufficient 

physical memory. Technology improvements in the solver and increase capability of hardware 

will improve solver performance. 
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APPENDIX 

Table 1. Problem instances used in the experiments. 

   Sensitive Item Sets 

No. Dataset mfreq Number 
Items in 

item set 

Support 

Category 

1 Chess .6 5 7 Low 

2 Chess .6 10 7 Low 

3 Chess .6 15 7 Low 

4 Chess .6 5 7 High 

5 Chess .6 10 7 High 

6 Chess .6 15 7 High 

7 Mushroom .1 5 5 Low 

8 Mushroom .1 10 5 Low 

9 Mushroom .1 15 5 Low 

10 Mushroom .1 5 5 High 

11 Mushroom .1 10 5 High 

12 Mushroom .1 15 5 High 

13 BMS .005 5 1 Low 

14 BMS .005 10 1 Low 

15 BMS .005 15 1 Low 

16 BMS .005 5 1 High 

17 BMS .005 10 1 High 

18 BMS .005 15 1 High 

 

Table 2. Data collected for each problem instance. 

Algorithm identification: (Exact Algorithm or Substitution Algorithm) 

Problem Instance number: 

nc: number of constraints in COP 

s: solver solution status 

t: solver run time 

Cn: number of composite variables (Substitution Algorithm) 

��: number of generated transactions 

ns: number of sensitive item sets that are not hidden 

nf: number of frequent item sets that became lost/infrequent 

ni: number of infrequent item sets that became lost/frequent 
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Table 3 – Substitution Algorithm example 

Step Candidate Generation Process 

0 Given:  

• �=150 

• mfreq = .3 

• Sensitive item set �max = {a,e} 

• � is calculated as 11.  

• Partial representation of border of frequent and infrequent item sets with support 

appearing as superscript  

ℬ�+ (ℱ′D): {a,b}52, {b, c, d, e}54, {b, d, e, f, g}63 

 ℬ�- (ℱ′D): {a,c}36, {a,d}49, {a,e}48, {a, f}24, {a,g}17, {c,f}15, {c,g}18,{h}1, {i}3, {j}1 

1 Items f and g follow a consistent pattern because they appear together in the {b, d, e, f, 

g} item set of the positive border and, when appearing separately in the negative border 

in item sets {a, f}, {a,g}, {c,f}, {c,g}, they are always paired with the same items: a and 

c. In addition, items h, i, and j are consider candidates; these include only one item and 

therefore, contain no supersets in the revised positive border. 

2 Implementing the Substitution Heuristic, items f and g are represented by composite 

variable C1 in the COP formulation and items h, i, and j are represented by composite 

variable, C2, in the COP formulation.  Within the revised positive border item set that 

includes C1, the support value remains 63. The support value of the revised negative 

border item sets that includes C1 are 17 and 15.  The support value of the revised 

negative border item sets that include C2 is 1. 

3 Including the composite variables, the border of frequent and infrequent item sets for 

the COP formulation process becomes: 

ℬ�+ (ℱ′D): {a,b}52, {b, c, d, e}54, {b, d, e, C1}
63 

ℬ�- (ℱ′D): {a,c}36, {a,d}49, {a,e}48, {a, C1}
17, {c, C1}

15,{ C2}
1 

 Mapping Process 

0 After the solver process with a smaller COP formulation, all occurrences of C1 and C2 

in the solver set of transactions are mapped back to the original item sets.   

1 53% ((24 + 15) / (24 + 15 + 17 + 18)) of the C1 variables set to one in the solver 

solution are mapped to item f and 47% ((17 + 18) / (24 + 15 + 17 + 18)) are mapped to 

item g. 

2 20% (1 / (1 + 3 + 1) of the C2 variables set to one in the solver solution are mapped to 

item h, 60% (3/ (1 + 3 + 1) to i, and 20% (1 / (1 + 3 + 1) to item j.     
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Table 4 Comparison of the Substitution Algorithm with Exact Algorithm 

Problem Instance Candidates Constraints 
∆ 

Solver Run Time ∆ Size of �!  ∆ 

1: Chess, .6,   5 × 7, Low 13 (6 %) (1 %) 1 % 
2: Chess, .6, 10 × 7, Low 41 (3 %) (1 %) .5 % 
3: Chess, .6, 15 × 7, Low 67 (2 %) (3 %) .9 % 
4: Chess, .6,   5 × 7, High 126 (12 %) (1) (1) 
5: Chess, .6, 10 × 7, High 151 (8 %) (1) (1) 

6: Chess, .6, 15 × 7, High 164 (7 %) (1) (1) 

  7: Mushroom, .1,   5 × 5, Low 64 (1.7 %) (1.8 %) (1.6 %) 
  8: Mushroom, .1, 10 × 5, Low 86 (3.1 %) (1.7 %) (1.0 %) 

  9: Mushroom, .1, 15 × 5, Low 103 (2.2 %) (1.3 %) (1.0 %) 

10: Mushroom, .1,   5 × 5, High 146 (2.4 %) (1.9 %) (1.0 %) 

11: Mushroom, .1, 10 × 5, High 171 (2.2 %) (0.1 %) (1.6 %) 

12: Mushroom, .1, 15 × 5, High 192 (2.9 %) (0.3 %) (1.0 %) 

 13: BMS-WebView1, .005, 5 × 1, Low  1937 (89.8%) (1) (1) 
 14: BMS-WebView1, .005, 10 × 1, Low 8436 (89.9%) (1) (1) 
 15: BMS-WebView1, .005, 15 × 1, Low 16031 (90.6%) (1) (1) 
15: BMS-WebView1, .005, 5 × 1, High 35194 (91.1%) (1) (1) 
17: BMS-WebView1, .005, 10 × 1, High 46357 (91.4%) (1) (1) 
18: BMS-WebView1, .005, 15 × 1, High 58148 (92.1%) (1) (1) 

 

(1) Solver did not process either Exact Algorithm or the Substitution Algorithm 

 


